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Abstract 
  In almost every project there will be uncertainties in the duration of the individual tasks. 

Therefore an elaborated risk management is needed and the best known tool to handle this in practice is 

the PERT approach. It has been shown in former publications (Tysiak (2015a), (2015b)) that the PERT 

approach comprises a lot of inaccuracies, contortions, and systematic miscalculations. Some of these 

disadvantages can be avoided or reduced by substituting PERT with Monte Carlo simulation. 

Unfortunately one unrealistic assumption still remains even in the Monte Carlo approach: The supposition 

that the durations of the individual tasks are independent from each other. In the present contribution it 

will be shown how to introduce correlations into the Monte Carlo approach and which impact they might 

have. 
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Introduction 

Since a project is said to be “a temporary endeavor undertaken to create a unique product, 

service, or result” ( PMI (2010)), there will always be the need of implementing some kind of 

risk management in project management (c.f. PMI (2010), Schelle/Ottmann/Pfeiffer (2006)). 

Risks in projects can occur in different dimensions, such as time, cost, quality etc. In this 

contribution we will only consider uncertainties related to time, but as everybody knows, who 

has experience in project management, a prolongation of a project normally will also affect its 

costs. A commonly used approach to deal with this situation is PERT (project evaluation and 

review technique, c.f. Kerzner (2009), Taylor (2010)), which has been developed by the United 

States Navy together with the OR department of Booz, Allen and Hamilton in the 1950s. 

Purpose of this development was to support the deployment of the Polaris-Submarine weapon 

system (c.f. Fazar (1959)). Unfortunately there are still some weaknesses, disadvantages, errors, 

and inaccuracies in using this method and therefore there still is the strong need for further 

improvement.   

 

The PERT approach 

PERT is based on the Critical Path Method (CPM) that was invented by DuPont in the 

late 50s of the last century (c.f. Kelley/Walker (1959)). CPM assumes deterministic durations of 

the different activities of a project and by calculating the earliest starting and finishing dates of 

the individual activities, it achieves the earliest finishing date of the whole project. Calculating 

the whole project backwards, one also gets the latest finishing and latest starting dates of the 
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activities. Those activities that have no buffers (the difference between the earliest starting and 

latest starting date) then constitute the critical path.  

In PERT we do not assume deterministic durations. The durations are usually estimated 

by so-called three-point-estimates (optimistic, most probable, and pessimistic durations). PERT 

then assumes beta distributions for the given three-point-estimates, calculates the expected 

durations and the variances for each activity, then performs a CPM approach with the expected 

durations, and by this identifies a critical path. Afterwards the non-deterministic approach is 

introduced by calculating the convolution of the distributions along the critical path. This 

convolution implies that the distributions of the durations of the activities are assumed to be 

independent. Furthermore the resulting distribution for the duration of the whole project is 

assumed to be normal, which is quite reasonable due to the Central Limit Theorem.  

Fig. 1 shows a fictitious project plan with predecessors, optimistic durations, most 

probable durations, pessimistic durations, expected durations, and their variances (with assumed 

beta distributions), whereas fig. 2 gives us the resulting critical path. The bold line in fig. 3 

shows the estimated distribution of the duration of the whole project as the independent 

convolution along the critical path.    

 

Activity Predecessors OD MD PD ED VAR 

A - 2 3 4 3.000 0.111 

B - 3 6 9 6.000 1.000 

C - 2 5 10 5.333 1.778 

D - 4 6 9 6.167 0.694 

E A, B, C 3 7 10 6.833 1.361 

F C, D 2 7 9 6.500 1.361 

G E 2 3 4 3.000 0.111 

H E, F 3 6 8 5.833 0.694 

I F 3 5 9 5.333 1.000 

J F 2 7 10 6.667 1.778 

K G, H, I 2 6 8 5.667 1.000 

L I, J 3 5 8 5.167 0.694 

source: Tysiak (2015a) 

Fig. 1. A fictitious project plan 

 

One of the main problems of PERT is the fact, that unfortunately the assumption of a 

unique critical path is not realistic. Due to the varying durations of the individual activities, it is 

not the case that the activities can be divided into critical and non-critical: Each activity 

possesses a probability between 0 and 1 to become critical. This was already mentioned by Van 

Slyke (1963), who called this property “criticality”. Van Slyke performed a lot of Monte Carlo 

simulations, which at his time of course were only possible with the deployment of large 

mainframes. In the end we have to admit that in the case of uncertainties, there is no unique 

critical path, but only a “critical field”.     
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source: Tysiak (2015a) 

Fig. 2. The critical path due to PERT 

 

To illustrate this critical field idea, we perform Monte Carlo simulations with the given 

example. To make the results comparable to the PERT approach, we use exactly the same beta 

distributions for the durations of the individual activities (see Tysiak (2015b) for computational 

background). Fig. 4 shows the “critical field” as a result of 10,000 simulations, whereas the 

dotted line in fig. 3 compares the distribution of the total duration of the project with the PERT 

result. It is obvious in fig. 3 that the mean increased from 24.5 in the PERT approach to 26.2 in 

the Monte Carlo simulation, whereas the standard deviation decreased from 2.128 to 1.636. 

More meaningful in the context of risk management is to observe quantiles. If we look at the 

maximum duration that will be achieved with a probability of 95% (here denoted as VaR95 

(value-at-risk)), we find that the VaR95 increased from 28.0 in the PERT approach to 28.8 in 

the Monte Carlo simulation. By this, it becomes obvious, that PERT underestimates the real 

risk. A more detailed explanation of this fact can be found in Tysiak (2015b). It can also be 

shown that this underestimation is systematical and perceivable in quite almost every project 

plan.     

 
source: authors’ construction 

Fig. 3. Results of PERT and Monte Carlo simulation with assumed independence 
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source: authors’ construction 

Fig. 4. The critical field (number of times that a node is critical) 

 

 

Correlations of the durations 

By using Monte Carlo simulation instead of PERT we might get a more realistic model of 

the real distribution of the duration of a project. But there is still one rather unrealistic 

assumption: The independence of the distributions of the durations of the individual activities. If 

we look for example at a construction project. Then one severe risk that may occur and affect 

the duration of tasks might be the weather. But if we have really bad weather, this will usually 

affect several tasks. Or if we fear in some other project that some tasks may last a little longer 

because of the qualifications and talents of the staff, then this will be the case for all the 

activities where this staff is involved. If you think of projects, you will easily identify reasons 

for dependencies/correlations between the durations of individual activities and quite seldom 

you can really believe that all the activities are totally independent from each other. Therefore in 

this contribution we will introduce correlations into the Monte Carlo simulation approach and 

additionally we will show their impact to the resulting duration of the whole project. 

In recent years, the interest in the generation of correlated random numbers (so-called 

“copulas”), that follow given distributions, rapidly increased. One main driver in this progress 

was certainly the need of such numbers in the vast field of simulation in finance (c.f. 

Mai/Scherer (2014), Huynh/Lai/Soumare (2008), Brandimarte (2014)). 

In the current publication we follow the technique that was proposed by Iman/Conover 

(1982). This approach is based on the well-known method to generate multivariate normal 

distributed random numbers that follow a given correlation matrix C. This can easily be 

achieved by calculating the Cholesky decomposition C = L × L
t
  of the given correlation matrix 

into a lower triangular matrix L and its transpose L
t
. By multiplying the matrix of the 

independently generated normal distributed random numbers with the matrix L, we get the 

correlated normal distributed random numbers. Iman/Conover realized that correlations can 

easily be achieved just by reordering the existing data. Therefore they proposed for arbitrary 

distributions to create independent random numbers and afterwards reorder them by using the 

ranks according to a multivariate normal distribution with the desired correlation matrix. 

Especially in the case that these arbitrary distributions are quite “good-natured” and not “too 

different” from the normal distribution these approach works very well.  

Since beta distributions fulfil these conditions quite well, these results could be verified in 

our analysis. To show this, we present the following example: If we take the 12 beta 
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𝐶 1 =

 

 
 
 
 
 
 
 
 
 

1 0.012 −0.007 0.010 −0.003 −0.004 0.797 0.016 0.003 0.003 −0.195 0.014
0.012 1 0.140 −0.011 0.001 0.000 0.008 −0.003 −0.8 0.013 −0.008 0.005

−0.007 0.140 1 0.005 0.601 0.018 −0.006 0.002 −0.015 −0.002 −0.011 0.002
0.010 −0.011 0.005 1 −0.006 −0.007 −0.004 0.409 0.013 −0.006 0.014 0.212

−0.003 0.001 0.601 −0.006 1 0.015 0.000 0.006 −0.006 −0.003 −0.011 −0.002
−0.004 0.000 0.018 −0.007 0.015 1 0.002 0.008 −0.002 0.007 −0.596 −0.001
0.797 0.008 −0.006 −0.004 0.000 0.002 1 0.015 0.007 0.000 0.001 −0.006
0.016 −0.003 0.002 0.409 0.006 0.008 0.015 1 0.006 0.003 −0.002 0.009
0.003 −0.800 −0.015 0.013 −0.006 −0.002 0.007 0.006 1 −0.013 0.008 −0.003
0.003 0.013 −0.002 −0.006 −0.003 0.007 0.000 0.003 −0.013 1 −0.003 −0.406

−0.195 −0.008 −0.011 0.014 −0.011 −0.596 0.001 −0.002 0.008 −0.003 1 −0.008
0.014 0.005 0.002 0.212 −0.002 −0.001 −0.006 0.009 −0.003 −0.406 −0.008 1  

 
 
 
 
 
 
 
 
 

 

distributions defined for the tasks A to L with the given correlation matrix C1 (fig. 5) and we 

perform the whole process of creating the independent beta distributed random numbers, 

generate the Cholesky decomposition of the given correlation matrix, create the normal 

distributed random numbers, and then reorder the beta distributed random numbers due to the 

ranks given by the normal distributed random numbers, we will get the empirical correlation 

matrix Ĉ1 (fig. 5). The congruence between C1 and Ĉ1 is quite obvious.  

The matrix C1 has been chosen with a lot of zero entries. The main reason for this is the 

fact that it is quite difficult to create correlation matrices with several negative values. It is well 

known, that apart from the symmetry, a correlation matrix has to be positive definite. This is 

equivalent to the property to possess only positive eigenvalues. In practice this complicates the 

construction of a valid correlation matrix very much. It is much easier to create correlation 

matrices with positive values than with negative values. In some sense this might be seen as a 

validation of “Murphy’s law”, because in risk management, positive correlations lead to an 

increase of risk, whereas negative correlations reduce risk.  

This is also the reason why in the following examples the matrix Cα is chosen with a lot 

of positive entries, whereas the matrix Cβ, which additionally contains negative values, is very 

sparse and only contains a few non-zero entries.  

 

𝐶1

=

�

 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 0.8 0 0 0 −0.2 0
0 1 0 0 0 0 0 0 −0.8 0 0 0
0 0 1 0 0.6 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0.4 0 0 0 0.2
0 0 0.6 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −0.6 0

0.8 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0.4 0 0 0 1 0 0 0 0
0 −0.8 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 −0.4
−0.2 0 0 0 0 −0.6 0 0 0 0 1 0

0 0 0 0.2 0 0 0 0 0 −0.4 0 1  

 
 
 
 
 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Requested (C1) and achieved (Ĉ1) correlation matrix 
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Monte Carlo simulation with correlations 

To illustrate the influence of positive correlations first, we want to take a correlation 

matrix Cα (fig. 6) with values of α between 0 and 1, where - of course – the case α = 0 

constitutes the already shown case of independency. This is an extreme example just to show 

the maximum impact.  

 
Fig. 6: The matrix Cα 

 

The resulting densities of our example can be found in fig. 7. For the sake of comparison, 

the already known densities of fig. 3 are again included. It is obvious that with increasing values 

of α, the density becomes flatter, the tails get heavier, and the mode moves slightly a little to the 

left. This can also be seen if we compare the values of the mean, the standard deviation, and the 

VaR95 (fig. 8). We have to keep in mind that the calculation of the duration depends mostly on 

two operations:  To build sums and maximums. If we look at two random variables and increase 

their correlation, this will not affect the mean of the sum, but the standard deviation will 

significantly increase, because there will be less compensations. If we look at the maximum of 

two variables, the increase of correlations will lead to a decrease of the mean of the maximum, 

because of less independency. The standard deviation of the maximum also depends on the 

relation of the means of the two random variables, but usually will not change that dramatically. 

Referring back to the results in fig. 8, we can postulate that the slight decrease in the mean is a 

consequence of the maximum operations, whereas the large increase of the standard deviation 

can be deduced from the summations. The resulting increase of the VaR95 is due to the fact that 

the decrease of the mean does not compensate the increase of the standard deviation.     

 

 

 

𝑪𝜶 =

�

 
 
 
 
 
 
 
 
 

𝟏 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶
𝜶 𝟏 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶
𝜶 𝜶 𝟏 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶
𝜶 𝜶 𝜶 𝟏 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶
𝜶 𝜶 𝜶 𝜶 𝟏 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶
𝜶 𝜶 𝜶 𝜶 𝜶 𝟏 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶
𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝟏 𝜶 𝜶 𝜶 𝜶 𝜶
𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝟏 𝜶 𝜶 𝜶 𝜶
𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝟏 𝜶 𝜶 𝜶
𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝟏 𝜶 𝜶
𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝟏 𝜶
𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝜶 𝟏 
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source: authors’ construction 

Fig. 7: The impact of positive correlations – case α 

 

 
source: authors’ construction 

Fig. 8: The means, standard deviations, and VaR95 depending on α 

 

In the second example we use the correlation matrix Cβ (fig. 9) with values of β between -

1 and +1. Looking at the results in fig. 10 and 11, we can detect almost the same behaviour of 

the mean, the standard deviation and the VaR95 as in the first example. The only obvious 

difference is the fact that the mean remains constant. This seems to be a result of the sparsity of 

the matrix Cβ. The main statement that follows from both examples is: The increasing 

correlations lead to an increase of risk! 

Mean Std.Dev. VaR95

PERT 24.50 2.128 28.00

α = 0.0 26.15 1.636 28.84

α = 0.1 26.04 2.039 29.34

α = 0.2 25.92 2.365 29.68

α = 0.3 25.80 2.651 30.05

α = 0.4 25.68 2.906 30.34

α = 0.5 25.55 3.138 30.55

α = 0.6 25.40 3.353 30.74

α = 0.7 25.25 3.553 30.90

α = 0.8 25.07 3.742 31.05

α = 0.9 24.86 3.924 31.18

α = 1.0 24.51 4.161 31.21
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Fig. 9: The matric Cβ 

 
source: authors’ construction 

Fig. 10: The impact of positive and negative correlations – case β 

 

 
source: authors’ construction 

Fig. 11: The means, standard deviations, and VaR95 depending on β 

 

    𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 𝐿 

𝐶𝛽 =

�

 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 0 𝛃 0 0 0 0 0
0 0 0 0 0 0 0 0 𝛃 0 0 0
0 0 1 0 𝛃 0 0 0 0 0 0 0
0 0 0 1 0 0 0 𝛃 0 0 0 0
0 0 𝛃 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 𝛃 0
𝛃 0 0 0 0 0 1 0 0 0 0 0
0 0 0 𝛃 0 0 0 1 0 0 0 0
0 𝛃 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 𝛃
0 0 0 0 0 𝛃 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 𝛃 0 1 

 
 
 
 
 
 
 
 
 
 

𝐴
𝐵
𝐶
𝐷
𝐸
𝐹
𝐺
𝐻
𝐼
𝐽
𝐾
𝐿

 

0

0,02

0,04

0,06

0,08

0,1

10 15 20 25 30 35 40

normal β=-1.0 β=-0.8 β=-0.6 

β=-0.4 β=-0.2 β=0.0 β=+0.2 

β=+0.4 β=+0.6 β=+0.8 β=+1.0 

β Mean Std.Dev. VaR95 β Mean Std.Dev. VaR95

- 1.0 26.15 1.026 28.02 0.0 26.15 1.636 28.84

- 0.9 26.14 1.095 28.11 0.1 26.14 1.703 28.93

- 0.8 26.15 1.160 28.20 0.2 26.14 1.761 29.02

- 0.7 26.15 1.225 28.25 0.3 26.14 1.817 29.10

- 0.6 26.15 1.288 28.34 0.4 26.15 1.874 29.20

- 0.5 26.15 1.349 28.42 0.5 26.15 1.931 29.31

- 0.4 26.15 1.409 28.48 0.6 26.15 1.986 29.38

- 0.3 26.15 1.469 28.57 0.7 26.15 2.041 29.47

- 0.2 26.15 1.528 28.67 0.8 26.15 2.098 29.55

- 0.1 26.15 1.586 28.75 0.9 26.15 2.152 29.62

0.0 26.15 1.636 28.84 1.0 26.15 2.201 29.69
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Conclusions and Remarks 

It could be shown, that it is possible to introduce correlations in Monte Carlo simulation. 

This offers the possibility to make a model more realistic. And, although it is quite difficult to 

estimate complex correlation structures in practice, this offers a way to get an impression of the 

possible impacts of these correlations (sensitivity of the model). In our case we had in the first 

example amplitude in risk (measured in VaR95) from 28.84 to 31.21. In the second example we 

found 28.02 and 29.69. Therefore this influence cannot be neglected.  

It should also be mentioned here that this way of implementing correlations in the Monte 

Carlo approach can not only be used for durations, but also for other parameters like costs.  
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