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Abstract 
One of the assumptions in PERT is the possibility to apply central limit theorem (CLT) to 

approximate path duration times with standard normal distribution. However, CLT presumes certain 
conditions in order to be correctly applied. This issue is often not adressed in related literature. The aim of 
this paper is to examine the conditions under which PERT can accordingly be applied. We consider the 
conditions and aspects of their practical application in order to verify the admissibility of CLT for given 
activity time distributions. Lindeberg-Feller condition turned out to be the simplest technique to verify 
that results of a PERT analysis are free from problematic CLT application. We also summarize other 
issues with current probabilistic project evaluation and propose a chance constraint optimization model 
for probabilistic project analysis. 
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Introduction 

Project Evaluation and Review Technique (PERT) is known by project managers and 
scholars. The principal idea is attractive: To produce a probabilistic analysis for the project 
completion time. However, there has been a lot of criticism of PERT mostly due to its model 
assumptions since the 1960s, e.g. (Charnes et al., 1964; Hartley and Wortham, 1966; 
MacCrimmon and Ryavec, 1964; Roy and Roy, 2013). Charnes et al. (Charnes et al., 1964) 
have already admitted erroneous usage of central limit theorem (CLT). Nevertheless, it is still 
taught at universities, explained in textbooks, implemented in software, and there is no other 
widely used and concise stochastic method today. Improvements that produce better bounds or 
approximate time distributions have either the same or similar assumptions as the original PERT 
or require large analytical or modelling efforts and therefore, are not easy to implement for 
approximate time estimation (Elmaghraby, 1989). 

There have been a lot of extensions of PERT proposed over the years. Although, there 
was enough work advancing several concepts, there is no finished alternative available. We 
would stress two main research directions: One tries to reduce the uncertainty of resulting time 
estimation, the other one aims at speeding up calculations for large stochastic networks. Both do 
not address the basic assumptions. Every theory or algorithm has its model. If the model does 
not reflect the observations of reality during empirical validation or the validity of the model 
cannot be explained theoretically, then the results should be explained somehow. Otherwise, the 
outcome is problematic. 

There is no obvious technique of uncertainty reduction given initial input estimations 
from expert estimation with potential bias, and some scholars assume mathematically nice but 
not empirically proven distribution types. As regards fast computations with long time horizons, 
computers have enough power today such that a user in practice would not probably notice the 
difference between tenth of a second or one second and maybe agree to wait for minutes in 
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return to a reliable estimation, given realistic network size assumptions. The main need is 
reliable reduction of uncertainty, and better and stable estimations. This bias grows with 
prediction time horizon and results thus become practically useless with long time horizon. This 
was shown already by Charnes et al. (Charnes et al., 1964). This is easy to see especially for 
distributions having infinite tails (e.g. exponential, normal) or large variance (e.g. uniform). 
Accuracy of the methods can only be verified at the end of each task and after the end of the 
project when time realizations will have become known. As we use mathematical models that 
reflect reality to certain extent, only empirical validation of the methods is possible and this is 
what scholars and practitioners usually do not do. 
Problematic assumptions of the original PERT (Malcolm et al., 1959) include: 

– Unimodal Beta distribution that allows for only three possible types and does not reflect 
diversity of decision maker’s (DM) preferences. Building of the distribution is a mathematical 
abstraction (Roy and Roy, 2013). Its choice for PERT was not supported with any evidence 
(Roy and Roy, 2013). 

– Use of expected time instead of probability distributions. After setup, PERT transforms 
the problem to a deterministic one. It was shown that the deterministic problem underestimates 
all values even in theory, e.g. with Jensen’s inequality (Benati, 2006; Elmaghraby, 1989; 
MacCrimmon and Ryavec, 1964). 

– Independent distribution functions of individual activities. This assumption simplifies 
the problem, but is not realistic: Tasks are at least dependent on their sequence. If earlier tasks 
finish late, subsequent tasks on critical path should be late as well and vice versa. There can be 
explicit dependencies between certain tasks. Once parallel threads collapse into one event node, 
the time distribution function (DF) of the next task becomes a conditional DF. In reality, the 
paths in stochastic networks (SN) are not independent because they share some activities. 
However, most research so far did not take into account the dependency between paths. Yao and 
Chu (Yao and Chu, 2007) showed that significant bias exists in the approximated DF of the 
project completion time when path dependency is ignored. 

– Large number of tasks in a path in order to approximate the sum of their time 
distributions with normal distribution applying CLT. This assumption is also wrong for projects 
with parallel activities. Obviously, almost all projects have parallel tasks. Leemis et al. (Leemis 
et al., 2006) and Elmaghraby (Elmaghraby, 1989) argue that in case of parallel networks with 
independent and identically distributed (iid.) stochastic activity durations, the resulting time 
distribution is skewed so therefore CLT is inappropriate. Another issue is possible dependence 
of tasks. In both cases, the DF becomes conditional DF and simple CLT is not valid. There 
exists multidimensional CLT, but its application was only considered for normally distributed 
times, e.g. by (Monhor, 2011). 

- CLT introduces ambiguity about initial time distributions of tasks (Roy and Roy, 2013), 
i.e. they had initially beta DF functions (DFs), but going back from the resulting normal 
distribution of the whole project, we can assume that they are marginally normal. In this way, 
there is little use of constructing initial beta distribution of tasks. 

As a result, PERT considers only one critical path and obtains only one of many possible 
lower bounds of total project’s time. There are many competing critical paths and possible 
lower bounds in stochastic project time network. 

There have been many attempts to use normally distributed times in PERT analysis, a 
review can be found in (Udoumoh and Ebong, 2017) Choice of a normal distribution was due to 
simplified modelling and calculations, especially for multivariate case. Assumptions of 
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independence of times, sequences, and paths usually accompany normality of activity time 
distributions. Unfortunately, the biased assumptions and lack of empirical evidence prevent us 
from accepting these models in practice. Computation time for a project network is not an issue 
today for realistic sizes of PERT networks. DF, cumulative distribution function (CDF) and 
inverse CDF functions were implemented in statistical tools and programming libraries. 
Aggregation of DFs can be done in a fraction of second today provided that DFs are known. On 
the other hand, the choice of normal distribution needs more explanations of its negative range 
of values and infinite tails. According to (Udoumoh and Ebong, 2017), some scholars use 
truncated normal distribution which is a solution to the problems with infinite tails. However, 
the result is not a normal distribution, and lacks the desired property of the normal family and 
the choice thus does not offer any advantages over any other distribution. Use of normal 
distribution was also found in (Monhor, 2011) and (Prékopa et al., 2004). Based on convenient 
qualities of multivariate normal distribution with correlations, a new approach to probabilistic 
critical path was presented. Although the papers provide an important step forward in 
identification of probabilistic critical path, because of the assumption of convergence of activity 
times on a path to normal distribution and model oversimplification, these models still do not 
seem fully practical. 

We consider that any method or algorithm should be applied only under the conditions 
that were defined for them. Without meeting these requirements, the results are problematic 
because the method was not designed for arbitrary conditions and can not be expected to return 
consistent and reasonable results. Therefore, how can we rely on a priori unproved result in 
management? One of the conditions for PERT is applicability of CLT for time distributions. We 
believe that in order to obtain consistent estimations we should at least determine that the 
underlying conditions are satisfied. 

Having described related problems with the PERT method, we formulate the research 
question: Can it be assured that PERT returns mathematically correct results through the use of 
CLT? 

We are going to consider ways of mathematical verification of initial random time 
estimations of tasks in order to determine applicability of CLT to the data and assure validity of 
PERT results. This analysis assumes continuous time DFs, but it generalizes to discrete case. 
This can at least remove the bias of inappropriate CLT application to the given data, and 
constitutes a contribution to current PERT analysis. 

We will also define an improved stochastic model for probabilistic project analysis 
including time, cost, quality, resources and other constraints. This new probabilistic PERT 
model aims at relying on more realistic assumptions and is based on chance constraint model. 
We believe that the term probabilistic PERT suits the new model better and we refer the usual 
PERT as original PERT. 

The paper contains the following parts. We will consider four main approaches for 
checking the applicability of CLT to given data. Next, examples for data verification for CLT 
applicability will be given. The new model for future PERT improvement is proposed after a 
short discussion of potential directions for methods used in project analysis. Summary and 
future work directions are presented in the concluding section. 
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Verification of conditions for CLT application 
According to original PERT, CLT is applied to approximate path duration times with standard 
normal distribution, independently of the DFs of individual activity times. There is an informal 
rule of thumb that there should be at least 30 activities on a path for proper CLT application and 
(Ludwig et al., 2001) claim that 10 activities on a path is enough for a good approximation. 
However, CLT presumes certain conditions in order to be safely applied and there exist several 
alternative conditions in theory. Unless we know a priori that distributions of the considered 
times satisfy them, we need to check these conditions. Violating CLT conditions can invalidate 
the project time estimation. 

Let time of k independent tasks be random variables, i.e. we have a random vector 

 that has the size k. According to the properties of independent random 
variables, we can obtain expected value and variance of aggregated time of tasks: 

 

 

The CLT theorem tells us that it should be applied only if summands meet certain 
conditions. Then, the sum of a large number of uncorrelated random variables can converge to 
approximately normal distribution and we can directly obtain any quantile of time distribution: 

 

There is no discussion in project management area on whether project time data a priori 
satisfy the requirements. If we do not have a-priori information, we need to check the 
conditions. We will show that CLT applicability check is not complex. However, violating CLT 
conditions means that convergence of the sum to normal distribution is not guaranteed and that 
thus PERT estimation could not be valid. 

There are a number of alternative criteria for CLT applicability for a sum of k 
independent random variables with finite expected values and variances. 

1. Lindeberg-Feller (L-F) condition (Spanos, 1999) checks that not a single variance is 
greatly larger than others. From Lindeberg’s condition 

 
 
 
 

Where  is the indicator function, follows Feller’s condition: 

 . 

The meaning of the conditions is that no single random variable dominates others in 

variance. Therefore, we can approximate:  and given constant . 
Parameter   is assumed to be small. 
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Parameter   regulates applicability of CLT regarding the quality of convergence. One 

may imagine it as a ratio of known values that is easy to maintain, e.g.  . Thus, the choice 
of  or comparable parameter for CLT is a measure of applicability of the method. If Lindeberg-
Feller condition does not hold, we can not use CLT. 

2. Another possible solution for CLT applicability is Lyapunov’s condition (Spanos, 
1999): 

 

 

Higher central moments or their absolute values are not given for the sum of random time 
variables (fourth order is an efficient substitution for the modulo), but we can derive the central 
moments from noncentral moments: 

 
 
 
 
Noncentral moments of the third or higher order can be computed as derivatives of the 

respective order of known characteristic function (CF) of each time distribution at point 0. And 
noncentral moments of the sum of time distributions are obtained as nonlinear combination of 
products of its marginal non-central moments, e.g.: 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Powers of expected values of orders of random variables in the last formulae, i.e. 

 , etc., are easily calculated for independent random variables. Assuming X and Y 
are independent random variables with DF   (Spanos, 1999): 

 

 
 



 

Project Management Development – Practice and Perspectives 
8th International Scientific Conference on Project Management in the Baltic Countries 

April 25-26, 2019, Riga, University of Latvia 
ISSN 2256-0513, e-ISSN 2501-0263 

 
 

Maksim Goman  119 

Unfortunately, the complexity for these operations is at least polynomial in k, i.e., the 
number of summands grows very fast. Nevertheless, this operation is conceptually feasible 
because of existing recurrent relations for the formulae. Nevertheless, an algorithmic 
implementation is required. 

 
3. Berry-Esseen (B-E) theorem with constant 0.4097 ≤ C ≤ 0.7975 (Spanos, 1999) for 

independent random variables provides the rate of convergence of the sum to the normal 
distribution and the maximal error of approximation: 

 

Application of higher moments is possible. The relation gives a bound on the maximal 
error of approximation between the normal distribution and the normalized distribution of the 
sum of random variables (measured by the Kolmogorov–Smirnov distance). Use of the upper 
bound of parameter C requires thousands of iid. random variables for good convergence 
(Spanos, 1999) because convergence rate of the difference to zero is . Although it is not 
convenient, central moments for the sum of arbitrary distributions can be calculated in the same 
way as for Lyapunov’s CLT condition above. The third central moment of modulo can be 
substituted with the fourth order higher central moment. 

 
4.  Finally, it is possible to check convergence of the sum of random time variables to the 

standard normal distribution using the following three metrics for arriving at parameters of the 
normal distribution because all the parameters are constant for any normal distribution: 

– variance of the sum , 

– skewness of the sum , 

– kurtosis of the sum . 
For the sum of arbitrary distributions, these parameters should be examined in the same 

way as for Lyapunov’s CLT condition above. 
There is multivariate CLT for random vectors that can be applied to joint distributions. 

For a sequence of iid. random vectors  with  and  under the 
restriction that no random vector dominates, it converges in order  to the following 
multivariate normal distribution (Spanos, 1999): 

  
 
 
 

However, we do not go beyond the requirements of the original PERT method. 
Multivariate (conditional) time random variables need a better model that includes assumption 
of task dependence. 

Thus, applicability of CLT is easy to verify and in the following we will consider two 
examples. It is obvious that Lindeberg-Feller condition is easier to verify because it needs only 
a ratio of each variance to the sum of all variances and a threshold. 
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1. Examples of data verification for CLT applicability 
We will consider two examples of sample problems where we check applicability of 

CLT. We assume different distributions (Beta, Normal, Triangular and Uniform) in the 
examples. We apply the simplest Lindeberg-Feller condition. A parameter  is used. 
This is very rough and conservative approximation proposal: It does not approach to zero well 
when applied with Feller condition. Nevertheless, even with such a favourable parameter, CLT 
conditions may not hold. Results of evaluation of CLT conditions for the single original PERT’s 
critical path are given in the Tables 1 and 2. 

  
Table 1 

Critical path of 10 identical tasks, = 0.05 
№ Distribu-

tion 
Opti-
mistic 

Most 
likely 

Pessi-
mistic 

E(X) VAR 
(X) 

Sum 
VAR 

L-F 
cond. 

B-E 
cond. 

Part 1: Ten original random variables 
1 Beta-10% 54 90 135 91.5 182.3 1822.5 0.1 0.152 
2 Beta 60 100 150 101.7 225.0 2250 0.1 0.152 
3 Beta+10% 66 110 165 111.8 272.3 2722.5 0.1 0.155 
4 Triangular 60 100 150 103.3 338.9 3388.9 0.1 0.074 
5 Uniform 60 100 150 105.0 675.0 6750 0.1 0.098 

Part 2: Ten modified random variables (basis) 
1 Beta  a 29.83 38.7 47.57 38.7 9.7 87.4 0.1 0.130 
2 Beta 38 43 48 43 2.8 27.8 0.1 0.125 
3 Beta  b 37.57 47.3 57.03 49.3 10.5 105.2 0.1 0.129 
4 Triangular 38 43 48 43 4.2 41.7 0.1 0.074 
5 Uniform 38 43 48 43 8.3 83.3 0.1 0.098 

Part 3: Single additional random variable q (smaller variance) 
1 Beta 41 43 45 43 0.4 87.9 0.0995 0.129 
2 Beta 41 43 45 43 0.4 28.1 0.0984 0.121 
3 Beta 41 43 45 43 0.4 105.6 0.0996 0.124 
4 Triangular 41 43 45 43 0.7 42.3 0.0984 0.072 
5 Uniform 41 43 45 43 1.3 84.7 0.0984 0.095 

Part 4: Single additional random variable q (larger variance)  
1 Beta 33 43 53 43 11.1 98.5 0.1128 0.119 
2 Beta 33 43 53 43 11.1 38.9 0.2857 0.170 
3 Beta 33 43 53 43 11.1 116.3 0.0955 0.117 
4 Triangular 33 43 53 43 16.7 58.3 0.2857 0.098 
5 Uniform 33 43 53 43 33.3 116.7 0.2857 0.130 
Source: Author’s calculations based on Hajdu and Bokor (2014) 

 
The first example in Table 1 was taken from sample 1 in (Hajdu and Bokor, 2014). Part 1 

is simply a sequential set of 10 independent tasks with identical DF. Part 2 contains changed 
data: Derived from the most likely value (m.l.v.) of “Beta” were most likely values of “Beta a” 
m.l.v. (“Beta a”)=0.9*m.l.v.(“Beta”) and m.l.v.(“Beta b”)=1.1*m.l.v.(“Beta”). Optimistic 
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(pessimistic) values of distributions “Beta a” are obtained as m.l.v.*0.9-5 (m.l.v.*1.1+5). 
Finally, CLT is not applicable according to Lindeberg-Feller condition. The third and forth 
examples add an eleventh random variable of the same distribution as other 10 variables, but 
with slightly smaller variance in example 3 and larger one in example 4. In examples 3 and 4 
optimistic, most likely, and pessimistic estimations of the additional random variable with its 
expected value and variance are given in Table 1. The variable is added to the 10 basis variables 
in the respective lines from example 2 to obtain the sum of variances and Feller’s condition for 
the sum. 

It is easy to see from Table 1 that the original data from the paper (Hajdu and Bokor, 
2014) does not satisfy CLT conditions. Parts 2-4 show that adding a single random value with 
the same mean value but smaller variance does not change a lot, while on the opposite, adding 
an extra variable with relatively larger variance deteriorates the condition dramatically. It is 
worth to note that “relatively large” starts only at 15% larger variance in the example 4 and the 
difference of the criteria are evident. 

Berry-Esseen condition for all the cases was computed using fourth central moments. It 
shows the maximum difference of cumulative DF of the sum and the respective normal 
distribution cumulative DF. It is clear to see that 10 iid. distributions are not enough to achieve a 
sufficient similarity to normal distribution. The difference is over 10% most of the time. 
Although a DM should decide on whether this is acceptable, the popular values of statistical 
significance today are 5% or less. In Example 4, it is clear to see that adding only one random 
value with larger variance increases the difference in all cases. Both L-F and B-E conditions 
behave consistently. 

 
Table 2 

Critical path of 10 tasks,  = 0.05 
Parameter Beta (Mean/Var) Triangular 

(Mean/Var) 
Uniform 

(Mean/Var) 
Task 2 19/9 16.67/15.50 23/27 
Task 5 2.33/0.44 2.67/0.72 3.00/1.33 
Task 8 0.63/0.01 0.67/0.02 0.70/0.03 
Task 15 3.17/0.25 3.33/0.39 3.50/0.75 
Task 16 4.00/0.11 4.00/0.17 4.00/0.33 
Task 17 10.00/0.44 10.00/0.67 10.00/1.33 
Task 18 2.00/0.11 2.00/0.17 2.00/0.33 
Task 27 0.52/0.025 0.53/0.03 0.55/0.07 
Task 28 3.83/0.257 3.67/0.39 3.50/0.75 
Task 29 2.17/0.25 2.33/0.39 2.50/0.75 

Sum VAR 10.89 18.44 32.68 
Max L-F  cond. 0.83 0.84 0.83 

Source: Author’s calculations based on Birge and Maddox (1995) 
 
The second example was taken from (Birge and Maddox, 1995). Assuming minimum 

duration as pessimistic, maximum as optimistic, mean as most likely from table 8 in (Birge and 
Maddox, 1995), we produced beta distribution parameters of task duration according to the 
original PERT method. Critical path was also determined according to the original PERT 
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approach: 2-5-8-15-16-17-18-27-28-29. We verified L-F CLT condition for the critical path and 
summarized in Table 2. We then experimented with triangular and uniform distributions based 
on the same initial three point estimates. Although the variance of these distributions is larger, 
the effect on CLT condition is limited. 

We can see from Table 2 that in this case CLT is not applicable for 10 tasks in the path 
because variance of task 2 is dominating. 

To conclude, reliance on CLT for good estimations is very poor. As it follows from 
theory, CLT is a tool for large number of summands of relatively close (preferred small) 
variance. Outliers in sense of variance will be dominating when sample size is close to infinity. 
Small samples may not assure sustainable and reliable approximation. The rule of thumb of 30 
samples for CLT application does not hold either. From our further experiments with example 1 
in Table 1, sample sizes should be about one hundred to get the Kholmogorov-Smirnov 
difference less than 1 % with conservative conditions and data. This conforms to the theory of 
CLT. We considered very simple case of iid. variables with only one outlier and it was hard to 
obtain close approximation of normal distribution. Results will clearly depend on data. 
Therefore, for project estimation, we suggest verification of the conditions, not relying on 
chance. 

 
Discussion 

We found that the research question can be answered affirmatively: By verifying CLT 
conditions we can assure that original PERT gives appropriate answer for the given critical path. 
Unfortunately, this is a fixture for only one PERT assumption. Moreover, we should consider 
next, what to do in case when CLT is not applicable. 

We believe that further research activities should be applied to definition of multiple 
critical paths and usage of bounding methods to derive time bounds for each task. Search for 
uncertain duration presumes aggregation of time DFs along paths in the project stochastic 
network. A universal approach should presume arbitrary distributions and dependencies of 
tasks. We consider that the uncertain nature of the problem imposes little credit to very precise 
time estimations. Therefore, methods that can compute reasonable bounds of time distributions 
of task durations promise more practical benefits to DM. These reasonable methods should 
include DM’s risk perception in some way. 

Based on the current study, we propose a six-value-set that may describe every time 
distribution. These are expected value, variance, upper and lower bounds of DFs and 
corresponding probabilities for the upper and the lower bounds. In case of a lopsided DF, only 
information about variance can not reveal how much the distribution is skewed, but the bounds 
will always show this information. This gives efficient information about time DFs to judge 
about their criticality for DM. Next, attention to problems of conditional uncertainty and cases 
of complex multivariate distributions is also needed. Finally, project management is a 
continuous activity. After the project start we observe realizations of time of tasks in the 
network. This is vital information about real performance and hence, it should be used to update 
time estimations of remaining tasks and even for corrections of the model. This update is 
needed according to Deming Cycle and a possible solution for that is Bayesian approach. 

Many researchers employ DFs that have nice mathematical properties in order to simplify 
formulas and computations. Ability to easily derive the resulting distribution of the convolution 
is vital for mathematical manipulations. But there are issues that have not been fully understood. 
For instance, if one applies normally distributed times, to what extent an infinite tail is realistic 
or what is the meaning of negative time in the left tail? It is not feasible to consider an infinite 
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delay of tasks: The tasks or the whole project will be terminated relatively shortly due to 
resource constraints and management intervention. Truncated random variables lose some of 
their nice properties and their addition is as hard as for uniformly distributed variables. Finally, 
how to build and verify normally distributed times based on the current state of knowledge and 
uncertainty about a particular project? 

We believe that realistic DFs are important. Consideration of uniform or triangular 
distributions instead of beta distribution is new in this context since they were mostly not 
considered in the last 30 years. Nevertheless, these simple distributions are easier to build with 
an expert and understand their meaning. Johnson (Johnson, 1997) has shown that more simple 
intuitively obvious triangular distribution can be very close to beta DF and proposed a 
procedure for estimating the necessary parameters. 

 
Chance constraint optimization model 

We attempt to provide a model for prospective improvement of original PERT. An 
improved mathematical model should have realistic assumptions about distributions used and 
the notion of stochastic critical path. We aim at creation of probabilistic PERT with outcomes 
similar to CPM method, i.e. estimation of earliest and latest start and end times for every task. It 
should be not significantly more complex in use for practitioners than current deterministic 
methods, yet be based on well developed mathematical theory. Most often, the main goal is 
estimation of the maximum time of a project. However, resource and cash flow uncertainties are 
also important and should be represented in the model. There are models that consider costs or 
cash flows along with time, e.g. (Benati, 2006). However, to the best of our knowledge there are 
no fully stochastic models that combine all aspects of time, cost and resource availability, i.e. 
current solutions are stochastic only in one of the two aspects: time or cash flow. 

 One of the first chance constraint programming models for SN was proposed by 
(Charnes et al., 1964; Bruni et al., 2009). In their stochastic optimization problem activity times 
had exponential and discrete DFs respectively. The former model was shown to have errors 
(Bruni et al., 2009) and used a chance constraint programming method that turned out to be 
problematic (Elmaghraby et al., 2001). 

A universal management approach should account for time and resources. The only 
assumption is that DFs of the activities’ durations are known. We do not assume any specific 
DF types or independence. DM’s risk aversion can be expressed with reliability thresholds  
for different constraints. The model is as follows: 
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where 

 random duration of task j; 

 start and finish time of task j; 

 duration of a path; 

 predefined time constants; 

 cost function of resource vector r; 

 function of resource requirements for task j at time t depending on task duration; 

 reliability of meeting resource chance constraints for task j at time t; 

 is a set of preceding tasks to the current task; 

is a set of following tasks after the current task; 

 set of all paths; 

 is a reliability threshold for probabilistic critical path selection; 

 is a reliability threshold for task time constraints. 

 

In general, this is a multicriteria stochastic optimization problem. Most potential 
deterministic and stochastic issues for a project can be represented with the model, therefore all 
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constraints are optional. Maximum time bounds of the project and cost of used resources are 
minimized. The bounds depend on K longest probabilistic paths. They are determined by chance 

constraint a). It is possible to have deterministic time thresholds  in chance constraints b) 
and c) that mean desired time of begin or end of certain task, e.g. a milestones or explicit 
dependency of project operations. Constraint vector d) defines probabilistic compliance with 
task resource requirements during task execution time. Constraints e) and f) are deterministic, 
but their variables are random time variables. Together, they represent the sequential task 
execution strategy in PERT networks. One of our goals should be the determination of time 
bounds of start and finish times of each task like in deterministic CPM method. The meaning of 
e) is the starting time of the current task is the longest finish time of all preceding tasks. The 
same is valid for f), the finish time of the current task is the earliest starting time of all following 
tasks. Finally, constraint g) accounts for stochastic time of a path. 

We do not suggest any specific method to solve the model in the current paper. The 
model provides a uniform representation of uncertainty of project management problems. Cost 
functions of resources are reserved for future research possibilities. Stochastic task scheduling 
can be a natural extension of this model. 

 
 

Conclusions 
According to original PERT, CLT theorem approximates path duration times, regardless 

of DFs of individual activity times. However, the theory presumes that CLT is to be applied 
under predefined conditions. We considered verification of the conditions. While scholars 
usually omit CLT conditions or artificial data in experiments seem to converge with CLT to 
normal distribution, e.g. (Ludwig et al., 2001), this is an unproven heuristic. On two typical 
examples from literature, we showed that it may not be always true and data can contradict the 
theory of CLT. Regrettably, we did not find empirical data from a real project in literature for 
testing. 

We considered the conditions of CLT and aspects of their practical application in order to 
verify the admissibility of CLT for given activity time distributions. These simple techniques 
allow verification of validity of classical PERT for specified activity time estimations. Every 
practitioner can use the verification to assure validity of PERT assumptions and feasibility of 
the results of PERT analysis, even using spreadsheet software. Illustrative examples were 
provided. We believe that this check should improve the degree of trust in PERT results. 

While criteria for CLT applicability are well known in probability theory, our conclusion 
is that they may have restricted application. The constraints of CLT applicability are usually 
omitted in papers. We do not know whether CLT conditions are assumed in existing software. 
We consider that CLT can be applied to sequential critical path in classical PERT, but only after 
verification of CLT applicability. Aggregation of times of several parallel activities is to be 
done with other methods. 

We can conclude that in order to improve original PERT, we should develop a better 
model with realistic assumptions and loopback control after the beginning of the project. We 
provide such a model in the paper. Our following research will be directed at obtaining time 
bounds for project tasks with the aforementioned model. 

Finally, a project is not a static thing. After the start, time of finished activities become 
realizations of random variables. This is valuable information related to the current project with 
unique ambiance. In conformance with Deming principle, we should update our time 
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estimations based on this recent information. Bayesian method is a natural tool for that. There 
are already attempts at this, e.g. (Cho, 2009; Gardoni et al., 2007; Kim and Reinschmidt, 2009). 
Thus, model assumptions can be amended and estimates of the following activities improved 
based on revealed times of previous ones. Apparently, the model should be updated every time 
new information is received using Bayes approach. 
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